Protocol Name/Title:	
Historic/Ancient Protein Extraction (SP3)	
Based on:	Last Edited Date:
Hughes et al. 2019	08/15/22
CONTACT: labol @ analy and	00/15/22

CONTACT: <u>lclark@amnh.org</u>

1P. ANCIENT PROTEIN EXTRACTION

PRINCIPLE:

This protocol is intended to isolate degraded (ancient or historic) proteins. Also called the SP3 protocol, the procedure outline below is based on Hughes et al. 2019 - "Single-pot, solid-phase-enhanced sample preparation for proteomics experiments". SP3 uses a hydrophilic bead-based approach that consists of nonselective protein binding and rinsing steps completed with a purification of proteinaceous material in a final elution step.

CONSUMABLE MATERIALS:

• 1.5 mL Safe-Lock tubes

REAGENTS -

Protein reconstitution -

- BSA
- Triton X-100
- Tween 20
- DTT
- NaCl
- HEPES sodium salt
- Sodium hydroxide
- Iodoacetamide

- SDS
- NP-40
- Deoxycholate
- EDTA
- Glycerol
- NaOH
- cOmplete, EDTA-free protease inhibitor
- SP3 processing and protein digestion -
 - <u>Sera-Mag SpeedBeads</u>
- <u>Sera-Mag SpeedBeads</u>

• 100% Ethanol

- Ammonium bicarbonate
- Trypsin + rLysC mix
- cOmplete protease inhibitor, EDTA-free
- Benzonase Nuclease

Benchtop Bleach:

For cleaning work surfaces. Approximately 1:5 dilution with distilled water.

TRAINING REQUIRED:

Please see Lauren Clark prior to starting any work detailed in this SOP if you have not completed all of the training listed above.

- \bigcirc Indicates gloves should be changed and/or that clean gloves are required.
 - Indicates a potential 'break point' in the protocol.

PROCEDURE:

Ø

1. Reagent Setup

- HEPES buffer
 - Prepare a 0.2 M HEPES stock solution in water. Adjust the pH to 8 using a 2 N stock solution of NaOH prepared in water. Once prepared, this solution can be stored at room temperature (24 °C) indefinitely.
- Prepare DTT stock solution at a concentration of 100 mM in water.
 - Note: DTT is oxygen sensitive and should be prepared directly before use.
- Prepare IAA stock solution at a concentration of 200 mM in water.
 - Note: IAA is light sensitive and should be prepared directly before use.
- Prepare SDS stock solution at a concentration of 10% (wt/vol) in water. Once prepared, this solution can be stored at room temperature indefinitely.
- Prepare Triton X-100 stock solution at a concentration of 10% (vol/vol) in water. Once prepared, this solution can be stored at room temperature indefinitely.

- Prepare NP-40 stock solution at a concentration of 10% (vol/vol) in water. Once prepared, this solution can be stored at room temperature indefinitely.
- Prepare deoxycholate stock solution at a concentration of 10% (wt/vol) in water. Once prepared, this solution can be stored at room temperature indefinitely.
- Prepare glycerol stock solution at a concentration of 10% (vol/vol) in water. Once prepared, this solution can be stored at room temperature indefinitely.
- Prepare NaCl stock solution at a concentration of 5 M in water. Once prepared, this solution can be stored at room temperature indefinitely.
- Prepare cOmplete protease inhibitor stock by dissolving one tablet in 1 mL of water. Once prepared, this solution can be stored at -20 °C indefinitely.

2. Buffer Preparation

- Reconstitution Solution
 - 50 mM HEPES, pH 8, 1% (wt/vol) SDS, 1% (vol/vol) Triton X-100, 1% (vol/vol) NP-40, 1% (vol/vol) Tween 20, 1% (wt/vol) deoxycholate, 5 mM EDTA, 50 mM NaCl, 1% (vol/vol) glycerol, 1× cOmplete protease inhibitor, and 5 mM DTT
 - This solution should be prepared fresh and stored on wet ice until use
- SP3 bead stock
 - See additional information and tips under Notes
 - SP3 is generally performed at a bead/protein ratio of 10:1 (wt/wt)
 - i. Place the tube on a magnetic rack until the beads have settled to the tube wall and remove the supernatant.
 - ii. Off the magnetic rack, reconstitute the beads in 200 μL of water and pipettemix.
 - iii. Place on the magnetic rack until the beads have settled to the tube wall and remove the supernatant as waste.
 - iv. Reconstitute the beads at a suitable working concentration in water (e.g., 50 mg/mL). Prepared bead stocks can be stored at 4 °C for 1 month.
- SP3 rinse solution

- Prepare an 80% solution of ethanol in water. This solution should be prepared fresh weekly and stored at room temperature.
- SP3 digestion solution
 - Digestion solution is 100 mM ammonium bicarbonate, pH 8, in water. This solution should be prepared fresh and kept on wet ice until use.

3. Extraction

Protein Preparation

- 1. Preheat a ThermoMixer to 60°C
- 2. Prepare a 1 mL of a stock solution of BSA in a 1.5-mL tube at 1 mg/mL in a reconstitution solution.
- 3. Heat the prepared BSA stock tube in a ThermoMixer at 60°C for 30 min while mixing at 1,000 rpm
- 4. Remove the tube from the ThermoMixer and allow it to cool to room temperature in a rack on the lab bench.
- 5. Alkylate reduced disulfides by adding 100 μ L of IAA stock to the BSA tube, and then incubate at room temperature in the dark for 30 min.
 - a. IAA is light sensitive and incubations should take place in the dark.
- 6. Quench the alkylation reaction by adding 50 μ L of DTT stock to the BSA tube, and then incubate at room temperature for 15 min in a rack on the lab bench.
 - a. The prepared sample can be stored at -80° C indefinitely.

SP3 protein cleanup and digestion

- 7. Precool the ThermoMixer to 24 $^{\circ}$ C.
- 8. Dilute 10 μ g (10 μ L of the prepared 1 mg/mL stock) of the prepared BSA to a final volume of 48 μ L in reconstitution solution.
- 9. Add 100 μ g of prepared SP3 beads and pipette-mix to homogenize the solution. This will be 2 μ L of a prepared 50 μ g/ μ L SP3 bead stock, giving a final total volume of 50 μ L of protein solution.

- a. Ensure mixing of beads with sample by gently pipetting the mixture up and down.
- 10. To induce binding of the proteins to the beads, add 50 μ L of ethanol to the BSA mixture containing the SP3 beads. Briefly shake the tube to homogenize.
 - a. Do NOT finger flick/vortex the sample and avoid any excessive shaking after adding ethanol.
- 11. Incubate the binding mixture in a ThermoMixer at 24 °C for 5 min at 1,000 rpm.
 - a. Avoid mixing at >1,000 rpm.
 - **b.** Look for 'clumping' of the beads which indicates that proteins are binding.
- 12. After the binding is complete, place the tube in a magnetic rack and incubate it until the beads have migrated to the tube wall.
 - a. Look for beads binding to the wall of the tube.
- 13. Remove and discard the unbound supernatant in an appropriate waste container.
 - a. Be careful not to disturb the magnetic beads when removing the supernatant.
- 14. Remove the tube from the magnetic rack, and add 180 μ L of 80% ethanol SP3 rinse solution and GENTLY pipette-mix three to four times to reconstitute and rinse the beads
- 15. Place the tube on the magnetic rack and incubate until the beads have migrated to the tube wall.
- 16. Remove the supernatant, taking care not to disrupt the beads.
 - a. An SDS-page assay can be used to visualize and troubleshoot lack of protein binding.
- 17. Repeat Steps 12–16 two further times to completely rinse the proteins bound to the SP3 beads.
 - a. Upon the final rinse, be sure to remove as much liquid as possible in order to avoid carryover to enzyme digestion.
- 18. Remove the tube from the magnetic rack and add 100 μ L of digestion solution containing 0.4 μ g of trypsin + rLysC mix.
 - a. Do NOT pipette to mix
 - b. Amount of trypsin can vary depending on sample type.
- 19. Using a micropipette with a 200- μ L tip, gently push the beads that are not covered by liquid along the tube wall into the digestion solution. Do not attempt to pipette the mixture.
 - a. If necessary, very GENTLY shake the tube, but do NOT flick.

- 20. If available, sonicate for 30 s in a water bath to fully disaggregate the beads. If a sonicating water bath is not available, incubate the tube at 37 °C in a ThermoMixer for 10 min at 1,000 rpm mixing.
- 21. Pipette-mix to ensure proper reconstitution of the beads and incubate for 18 h at 37 °C in a ThermoMixer at 1,000 rpm mixing.
 - a. Incubation can be shorter than 18h depending on sample type.
- 22. After the digestion is complete, centrifuge the tube at 20,000g at 24 °C for 1 min.
- 23. Place the tube on a magnetic rack until the beads have settled onto the tube wall and remove the supernatant to a fresh tube.
 - a. Be sure not to remove the beads when discarding the supernatant.
 - b. Do NOT freeze the sample if it contains beads.
- 24. Proceed with MS analysis of the peptide sample.

4. Notes

- In this protocol example, we are going to process 10 μ g of protein and therefore need 100 μ g of beads (2 μ L from each of the 50 mg/mL vendor stocks).
- SP3 is generally performed at a bead/protein ratio of 10:1 (wt/wt), with a minimum volumetric concentration of 0.5 μ g/ μ L.
- Based on the concentration of your bead solution, take the required amount of the two vendor bead stocks and combine them in a single tube.