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Summary

The method of direct optimization of nucleic acid sequences proposed by Wheeler (1996)
is elaborated and explained in light of dynamic programming procedures. An exact solu-
tion to the problem of phylogenetic reconstruction of unequal-length sequences is de-
scribed, and its impracticality demonstrated. A branch-and-bound procedure is elucidat-
ed to accelerate this process. Additionally, a series of heuristic solutions are defined for
this general problem, allowing for both significant decrease in computational effort and
integration with existing algorithmic economies. Finally, potential implications of this
method are discussed in light of putative long-branch attraction problems.

Introduction

Phylogenetic reconstruction of molecular sequence data requires two types of trans-
formational events: (i) nucleotide (or amino acid) substitution and (ii) nucleotide {or
amino acid) insertion and deletion. Standard procedures of character optimization
and diagnosis (Farris, 1970; Fitch, 1971; Sankoff and Rousseau, 1975; Sankoff and
Cedergren, 1983) accommodate character state transformation easily. Insertion-
deletion events, however, are not so simply explained. Normally, a sequence align-
ment procedure is performed to establish the putative homologies which are re-
quired for standard character analysis (Feng and Doolittle, 1987, 1990; Hein, 1989,
1990; Higgins and Sharp, 1988, 1989; Wheeler and Gladstein, 1992, 1994), and
gaps are inserted and treated as a fifth state. A heuristic method has been proposed
(Wheeler, 1996) to diagnose cladogram topologies directly without the intervening
multiple-alignment step. This discussion seeks to place the direct optimization
method within the context of dynamic programming and to present both exact and
heuristic solutions to the problem.
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The problem

Unlike many sources of information, molecular sequence data present not only vari-
ation in character state, but also in character number. That is, the number of char-
acters presented by terminals may vary because sequences frequently differ in
length. A cartoon of this situation is illustrated in Figure 1. Normally, the four ter-
minal sequences (A, AA, AG and A), would undergo multiple alignment (Fig. 2),
and some sort of dynamic programming (Sankoff and Rousseau, 1975; Sankoff and
Cedergren, 1983) or short-cut procedure (Fitch, 1971) would be performed to di-
agnose the length or cost (in evolutionary steps) of any dendrogram (Fig. 3). Part of
this process involves the insertion of placeholders — gaps (“-”) to make the individ-
ual characters comparable. The sequence gaps are not observations, but the residue
of insertion-deletion events required by the variation in sequence length. This intro-
duces a certain epistemological inconsistency (Wheeler, 1996), treating what are in
essence transformational events as equal to observations (such as A, G etc.).

The optimization procedure of Wheeler (1996) seeks to avoid this inconsistency
and simplify the process by generalizing optimization to include insertion-deletion
events. Direct optimization yields more intelligible and frequently more parsimo-
nious results (Fig. 4).

Dynamic programming

An exact solution to the problem of sequence length variation can be achieved by
recasting the diagnosis of cladograms from one of sequentially optimizing a series
of simple characters (including gaps) to one of relating a single immensely (but not
infinitely) complex character. In essence, all imaginable sequences (of all lengths) are
possible states of this single character. The objective, then, is to create the most par-
simonious character transformation series.

Within this framework, dynamic programming can be applied to determine the
exact solution. As with the steps involved in optimizing Sankoff-type characters, the
first issue is to define all the possible character states at each node. For the standard
approach based on multiple alignment this would be simple — five states: A, C, G,
T and gap. Here, however, the character correspondences and ancestral sequence
length are unknown. The length of the hypothetical ancestral sequences is bounded
by length zero at one extreme — no bases (sequences arise de novo repeatedly), and
by the sum of the lengths of all the input sequences, since no parsimony-based op-
eration could yielded anything longer. Since each of the four bases (with nucleic
acids - gaps do not exist in real sequences after all) is possible at each position, the
total number of possible states is: #states = Z4* where k is summed from 0 to the
sum length of all input sequences. For three sequences of length four, there would
be 22,369,621 possible states. In reality this number would be more tightly bound-
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Figure 1. Four simple terminal sequences figure 2. The minimum-cost multiple align-
(A, AA, AG and A) related by cladogram. ment for the four sequences of Figure 1.

A-  AA AG A- A AA AG A
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A

Figure 3. Standard method diagnosis of Figure 4. Diagnosis of taxa and cladogram
the cladogram and taxa of Figure 1 using of Figure 1 by the direct method proposed

the multiple alignment of Figure 2. here.

ed. Since any insertion which would simultaneously occur in two descendent lin-
eages would be transferred to the line leading to their ancestor, the minimum length
of an ancestral sequence would be the lower of the two descendants and the maxi-
mum length would be their sum. Hence: #states = 4% again, however, where k is
summed from min (descendent 1, descendent 2) to the sum length of the two de-
scendants (descendent 1 + descendent 2) sequences. For three sequences of length
three, four and five there would be from 21,824 to 349,504. These are still large
numbers, but orders of magnitude smaller than the exhaustive case.

Once all the possible cases are enumerated (and a suitable cost matrix relating
all the possible states to each other has been specified), standard dynamic program-
ming in a “down pass” will yield the most parsimonious cladogram length and an-
cestral state assignments. Unfortunately, this will take a long time. Each internal
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node will require approximately twice the number of states squared operations,
from each of the possible combinations of the two descendent states and each of the
ancestral states (this will be smaller if the descendants are terminal taxa). Clearly,
this is impracticable for all but the smallest cases.

Branch and bound

Although the exhaustive optimization described above is absurdly involved, the
number of considered ancestral states and operations can be further limited. Since
the cost of each path through each possible state is a monotonically increasing func-
tion {lengths cannot go down), an upper bound on cost can exclude the vast ma-
jority of possible states (Hendy and Penny, 1982). Longer nucleic acid strings re-
quire (in general) more indels, hence the longer character states (i.e. sequences) are
likely to be excludable very early in the process.

The procedure outlined earlier (Wheeler, 1996) can act as such a bound since it
yields upper-bound estimates of tree length. In the example of Figure 1, an upper
bound of two insertion-deletion events and one base transformation (assuming in-
sertion-deletion events are assigned greater cost than base substitution) would be
postulated (Fig. 5). This would exclude ancestral state reconstructions of length
greater than two. Any higher number would exceed the bounded cost. The number
of possible character states would be limited to six (A, G, AA, GG, AG and GA).
Although this would result in a further dramatic reduction in computational com-
plexity, for real-world cases the reduction would likely be from an extremely absurd
situation to one which is merely absurd. Most likely, we will be limited to heuristics.

Heuristics

Wheeler (1996) presented a procedure to improve the initial estimates of cladogram
lengths. The optimization procedure is a straightforward generalization of nonad-
ditive or unordered optimization (Farris, 1970; Fitch, 1971). The down pass opti-
mization is depicted in Figure 6. In this case, there are five sequences of unequal
lengths. Without prior knowledge of base correspondences (alignment), it is impos-
sible to construct a hypothetical ancestor or determine how costly that operation is
(in terms of transformations). Hence, correspondences (putative homologies) must
be constructed as we go down the tree for the comparisons made at each node. In
essence, all possible schemes of comparison must be examined for each node and
that scheme which minimizes the number of minimum-cost union events (weighted
by the cost of a base transformation) and insertions and deletions (weighted by the
gap cost) is assigned to the node. In this way, the most efficient (i.e. lowest cost) hy-
pothetical ancestor is constructed.
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A AA  AG A
A(A/-)
AR Figure 5. Down-pass optimization of
A(R/—) Figure 1 using the method of Wheeler
(1996) used as an upper bound for exact
analysis.
Figure 6. A more
[ACGI IACTI complex example
* of the direct-opti-
ACK [ACA][ACTA| [ACGT] mization proce-
N~ — * dure. Boxes sur-
round terminal
ACD ACKW taxa, asterisks (*)
denote base substi-
tutions, parenthe-
ACK(W /_) ses insertion-dele-
tion events.

As with non-additive analysis, the procedure begins at the top of the tree (or
more specifically at an ancestral node of two terminal taxa) with the sequences ACG
and ACT. The construction of the hypothetical ancestor can be broken down into
two operations. The first can be thought of as an alignment step. The sequences are
aligned to minimize the weighted cost of indels and base transformations as deter-
mined by union/intersection counts. This is performed with the proviso that if a gap
is inserted in one sequence to correspond to a gap in the other, this is done at no
cost (the sequences would have a nonempty intersection). Each possible alignment
is considered (via dynamic programming) as in the Needleman and Wunsch (1970)
procedure. In this example, the best alignment contains one base transformation
and no gaps (Fig. 6). In the second operation, the hypothetical ancestor is con-
structed from this alignment by taking the union/intersection position by position
along the sequence yielding ACK (K = T or G in IUPAC parlance). This hypothetical
ancestral sequence is then compared with the next terminal ACA yielding another
hypothetical ancestral sequence, ACD at the cost of another base transformation.

On the other side, a similar operation comparing ACTA with ACGT vyields
ACKW. Proceeding to the next node, ACK is compared with ACKW. Here, the
alignment step requires no nucleotide transformations but does require an insertion-
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deletion event, yielding an ancestral sequence with ambiguities in both base assign-
ment and length. The first three bases are reconstructed as before ACK. The recon-
struction of the fourth, however, is more complicated. This optimization would al-
lows each of the three possibilities A, T, or GAP. This signifies that the position may
contain either an A or a T or just not be there at all. The entire topology has been
diagnosed at a cost of one insertion deletion events and four base transformations.

Greediness and shortcuts

In assigning states to hypothetical ancestral sequences, a method has been used of
necessity which may introduce error in calculating the tree length. When proceed-
ing down the tree, nucleotide assignments cases may occur in which a nucleotide
base (say A) is faced with a corresponding ambiguity in its putative sister taxon as
to whether or not a base exists (say G or GAP). How do we determine the condi-
tion of the ancestral sequence? If all transformations were equal (including indel
events, transitions and transversions), the ancestral condition would be the union of
the three states 2 la Fitch. However, this is rarely the case. More frequently investi-
gators postulate that indels are less plausible that base substitutions, that is the cost
of an insertion or deletion is greater than that of a nucleotide substitution. In this
case, the ancestral condition would then be assigned “R” for the union of A and G
and the GAP possibility excluded, taking the lower-cost transformation as yielding
the ancestral condition. It may be more globally parsimonious that the indel ambi-
guity not be removed at this stage, but the procedure will not foresee this. Hence,
the operations described here may overestimate tree length. Analogous reasoning
holds for choices where transition-transversion bias is involved. Identical behavior
could be observed using the optimization procedure described here with sequences
of identical length and comparing the results with a dynamically programmed tree
length (via a Sankoff step-matrix procedure).

Since we can not know the future (further down) sequences, optimization of un-
equal length sequences requires this myopia. As an aside, this method is in essence
a weighted nonadditive optimization. Given that the various transformation weights
are known, all optimization events, their costs, and results can be calculated before
the actual tree search. In this way, weighted step matrix parsimony calculations can
be accomplished at considerable savings in cost (in my experience the general
weighting comes at a cost of a low — ~5% — fixed premium on execution time). As
mentioned before, the procedure is local, globally more parsimonious may not be
considered (or even rejected). As a result, any error in length should be an overesti-
mate. For the case where the sequences are equal in length, the results can be ad-
justed by full dynamic programming of individual candidate topologies.

This direct optimization procedure frequently can be improved to get a better
(i.e. lower) upper bound on length through rerooting the down-pass network. A
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A AA  AG A

A(A/-) A(G/-)

Figure 7. Rerooted version of the example
A of Figure 5.

“virtual” root is postulated, and each of the 27~ 3 (for » terminal taxa) possible
roots used to determine a down-pass cost and the minimum retained. The estimate
of tree length based on the rooting of Figure 5 (two insertion-deletion events and a
single base change) is reduced by moving the root (Fig. 7), resulting in a length of
two insertion-deletion events. Some of the greediness of the down-pass algorithm
can be circumvented this way.

In addition to this rerooting, which requires the examination of # — 1 nodes (n
terminals), a second or up pass can be added to determine an estimate of the final
states for each of the internal nodes (with the proviso that the final sequences not
contain any gaps). Although this in itself will not effect the estimate of cladogram
length, the determination of “final” states allows the use of other algorithmic
speedups (Goloboff, 1996; Gladstein, 1997) which can dramatically improve the ef-
ficiency of tree searches.

The determination of final states can be achieved by traversing the tree in the di-
rection opposite from that of the initial pass, away from the root (or virtual root —
if rerooting has been performed). The final state set is defined as those states which
minimize the total cost summed over the three paths from the node: the current
node to each of its descendants and to the final states of its immediate ancestor. As
with the initial (“down?”) pass, the results of all character combinations can be pre-
calculated based on the matrix of transformation costs among each of the four nu-
cleotide states and insertion-deletion costs.

These precalculations assume that only local taxon states matter, and introduce
the errors of this heuristic procedure. For the initial pass, a two-dimensional matrix
is required containing the resultant state and cost for each of the character combi-
nations of A, C, G, T and “-”, and ambiguities~ 32 x 32. The second pass will re-
quire a second matrix of three dimensions describing all the possible interactions
among the two descendant and one ancestral states.
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Conclusions

The procedures outlined here allow the determination of a upper bound on clado-
gram length based on direct optimization of nucleotide sequences. This method is a
simple extension of parsimony-based cladogram construction to include the origi-
nation and disposition of characters. Although this method is more elaborate and
time-consuming that standard optimization procedures, the avoidance of multiple
sequence alignment should result in both more efficient and parsimonious results.
Furthermore, the nonindependence of gaps (i.e. insertion-deletion length), so tribu-
lating to phylogenetic analysis based on the necessary assumption of character in-
dependence, can be accommodated seamlessly. In fact, any such model in which nu-
cleotide changes interact (e.g. codon effects) can be integrated. Since the transfor-
mations are occurring within a single “character”, or more specifically among com-
plex character states, the independence of character vectors is not violated.
Insertion-deletion costs can be complex, nonlinear functions of length, or codon
bias added to analysis without violating this tenet of epistemological unity.

A final note concerns that pit of Dis, the “Felsenstein zone”, (Felsenstein, 1978).
The basic notion of nonhistorical, stochastically derived character matching based
on random similarity. It is postulated that under certain conditions, the most parsi-
monious result will not be the correct one. Leaving aside the notion of “correctness”
for the moment, it is worth noting that the size of this zone is inversely proportion-
al to the number of character states expressed by the phylogenetic data. This is due
to the requirement that the “bad” randomly similar character must overwhelm the
“good” historically informative ones. S. Farris (personal communication) and oth-
ers have noted that using characters in n-tuples (supersites) would reduce any long-
branch problem by increasing the number of states — thereby decreasing the chance
of random similarity. The methodology described here treats entire sequences as
characters with huge numbers of possible character states. If the inverse relationship
between the size of the Felsenstein zone and number of character states holds, the
zone may be small indeed.
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